doi:10.3969/j.issn.1009-6469.2020.04.009

◇药物分析◇

高效液相色谱法同时测定莨菪浸膏片中的4种活性组分

杜晖1,任静2,郑妍1

作者单位: 1西安市食品药品检验所,陕西 西安710054; 2空军军医大学第二附属医院药剂科,陕西 西安710038基金项目: 陕西省创新能力支撑计划(2018KJXX-089);陕西省中医药管理局科研项目(13-ZY005)

摘要:目的 建立高效液相色谱法(HPLC)同时测定莨菪浸膏片中东莨菪碱、山莨菪碱、硫酸阿托品和东莨菪内酯的含量。方法 采用Welch $C_{18}(150~\text{mm}\times4.6~\text{mm},5~\text{\mum})$ 色谱柱,甲醇-0.05%磷酸溶液梯度洗脱,流速 1.0 mL/min,进样量 20 μ L,检测波长 215 nm。结果 4种组分分别在 $0.501 \sim 20.059~\mu$ g/mL, $0.988 \sim 19.761~\mu$ g/mL, $0.468 \sim 9.361~\mu$ g/mL和 $0.502 \sim 10.030~\mu$ g/mL浓度范围内线性关系良好,平均回收率在 $98.3\% \sim 100.0\%$ 之间,RSD小于 2.8%。结论 该方法简单准确,灵敏度高,可用于莨菪浸膏片真伪辨析和质量控制。

关键词:色谱法,高压液相; 莨菪浸膏片/分析; 东茛菪碱; 山莨菪碱; 阿托品; 东茛菪内酯

The simultaneous determination of four bioactive components in belladonna extract tablets by HPLC

DU Hui¹, REN Jing², ZHENG Yan¹

Author Affiliations: ¹Xi'an Institute for Food and Drug Control, Xi'an, Shaanxi 710054, China; ²Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, China

Abstract: Objective To establish a high performance liquid chromatography (HPLC) method for simultaneous determination of scopolamine, anisodamine, atropine sulphate and atropine sulphate in belladonna extract tablets. **Methods** HPLC separations were carried out on a Welch C_{18} column (150 mm×4.6 mm, 5 μ m) with a linear gradient elution using methanol and 0.05% phosphoric acid at a flow rate of 1.0 mL/min. The injection volume was 20 μ L and the detection wavelength was 215 nm. **Results** Good linear relationships between the peak area and concentration were found in the ranges of 0.501 ~ 20.059 μ g/mL, 0.988 ~ 19.761 μ g/mL, 0.468 ~ 9.361 μ g/mL and 0.502 ~ 10.030 μ g/mL for four components, respectively. The average recoveries were in the ranges of 98.3% ~ 100.0% with the RSD less than 2.8%. **Conclusion** The method is simple, accurate and sensitive. It can be used for distinguishing the false and quality control of the belladonna extract tablets.

Key words: Chromatography, high pressure liquid; Belladonna extract tablet/analysis; Scopolamine; Anisodamine; Atropine sulphate; Atropine sulphate

莨菪浸膏片由三分三浸膏或颠茄浸膏制成,为抗胆碱药,具有解除平滑肌痉挛和抑制腺体分泌等功能,其主要成分为莨菪类生物碱。现行标准中只有鉴别和检查,无含量测定部分。现有文献关于托烷类生物碱常用测定法为酸性染料比色法[1]、高效液相色谱法[2-5]、毛细管电泳法[6]、色谱-质谱联用法[7-11]等。但目前检测方法仅针对相关药物中硫酸阿托品等3种极性较强的莨菪碱[12-15]含量的测定,有质控指标的缺陷,存在化学原料药投料的风险[16-17]。东莨菪内酯是一种香豆素类化合物,具有显著的抗癌、抗氧化、抗炎和杀螨[18-19]等作用。除常规的3种生物碱外,本研究2017年10月至2018年6月增加了东莨菪内酯的分离测定,为莨菪浸膏片的

辨伪存真和质量标准的建立提供依据。

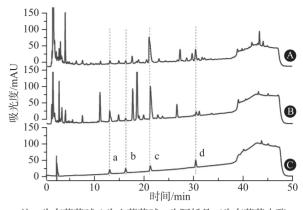
1 材料与方法

1.1 仪器与试药 戴安U3000高效液相色谱仪,配有二极管阵列检测器(美国赛默飞世尔公司); HC-3018R型低温冷冻高速离心机(合肥科大创新股份有限公司);Milli-Q Advantage超纯水机(美国密理博公司)。

莨菪浸膏片为市售药品(西安利君制药有限责任公司,生产批号1509559,规格24μg总碱量;沈阳同联集团,生产批号151004~151006,规格30μg总碱量);氢溴酸东莨菪碱(生产批号100049~201009)、氢溴酸山莨菪碱(生产批号100051~201607)、硫酸阿托品(生产批号100040~

201613) 和东莨菪内酯(生产批号110768~200504)。对照品购自中国食品药品检定研究院;甲醇为色谱纯(美国霍尼韦尔公司);其他试剂为分析纯。

1.2 方法


1.2.1 溶液的制备

- 1.2.1.1 样品溶液 取莨菪浸膏片30片,精密称定,研细,精密称取适量(约相当于总碱量0.3 mg), 置离心管中,精密加入甲醇5 mL,密塞,置水浴中超声提取15 min,再精密加入0.05 mol/L硫酸溶液5 mL,0.45 μm滤膜过滤即得。
- 1.2.1.2 对照品溶液 精密称取氢溴酸东莨菪碱 10.07 mg、氢溴酸山莨菪碱 9.95 mg、硫酸阿托品 9.68 mg和东莨菪内酯 10.03 mg,分别置于 100 mL量瓶中,加甲醇溶解并稀释至刻度,分别精密量取 0.5、1、2、5、10 和 20 mL,置 100 mL量瓶中,用甲醇-0.05 mol/L硫酸溶液(1:1)稀释至刻度,即得。
- **1.2.2** 色谱条件 色谱柱为 Welch $C_{18}(150 \text{ mm} \times 4.6 \text{ mm}, 5 \text{ μm})$;以甲醇为流动相 A, 0.05%磷酸溶液为流动相 B, 二元梯度洗脱 $(0 \sim 35 \text{ min}, A \text{ 相由 } 3\% \text{ 上升} 至 25\%; 35.0 ~ 40.0 \text{ min}, A \text{ 相上升至 } 50\%; 40.0 ~ 45.0 \text{ min}, A \text{ 相维持在 } 50\%; 45.1 ~ 50.0 \text{ min}, A \text{ 相维持在 } 3\%);流速为 <math>1.0 \text{ mL/min}, 柱温 30 \%, 进样量 20 \text{ μL}, 检测波长 215 \text{ nm}$ 。

2 结果

- **2.1 专属性考察** 分别吸取供试品和对照品溶液,按1.2.2项色谱条件进行液相分析,记录色谱图如图 1 所示,样品中杂质峰非常多,但被分析物与干扰组分得到了有效的分离,分离度均大于1.5。
- 2.2 线性范围和检测限的考察 精密量取 1.2.1.2 项所配置的东莨菪碱、山莨菪碱、阿托品和东莨菪内酯的混合对照品溶液,按 1.2.2 项色谱条件进行液相分析,以峰面积 y (mAU/min)对样品浓度 x (μ g/mL)进行线性回归,相关系数均在 0.999 3 以上,如表 1 所示。当 S/N 约为 3 时,计算出 4 种组分的检测限分别为 1.2、1.5、0.5 和 1.6 ng。
- **2.3** 重复性及稳定性考察 将批号为1509559样品溶液连续进样6次,发现4种组分保留时间和峰面积的RSD值分别为0.15%、0.13%、0.07%、0.10%和0.70%、0.69%、0.98%、0.38%,证明该方法的重复性满足实验要求。

将批号为1509559样品溶液保存在4℃环境中,并在24、48、72h和1周后进样分析,发现4种组分峰面积的RSD值分别为1.50%、1.79%、1.85%和2.02%,样品在1周内保持稳定。

注:a为东茛菪碱,b为山莨菪碱,c为阿托品,d为东茛菪内酯 图1 莨菪浸膏片供试品(A为沈阳同联151006、B为西安利君 1509559)和对照品(C)的高效液相色谱图

表1 莨菪浸膏片中4种组分的回归方程、相关系数、 线性范围和检测限

成分	回归方程	相关 系数	线性范围/ (μg/mL)	检测限/ ng
东莨菪碱	$y = 0.906 \ 6 \cdot x + 0.107 \ 1$	0.999 3	0.501~20.059	1.2
山莨菪碱	$y = 0.392 \ 6 \cdot x + 0.037 \ 4$	1.000 0	0.988~19.761	1.5
阿托品	$y = 4.1947 \cdot x + 0.3776$	0.999 9	0.468~9.361	0.5
东莨菪内酯	$y = 1.005 \ 4 \cdot x + 0.033 \ 3$	1.000 0	0.502~10.030	1.6

2.4 样品测定及回收率考察 按1.2.1.1 方法对样品进行前处理,按1.2.2 项色谱条件进行液相分析,测得4 批莨菪浸膏片中4 种组分的含量,如表2 所示。3 种生物碱含量的和相比药品规格略低,考虑可能是样品中还存在少量其他种类的生物碱。

表2 莨菪浸膏片4批样品中4种组分的含量/(微克/片, x ± s)

样品	东莨菪碱	山莨菪碱	阿托品	东莨菪内酯
西安利君1509559	3.23±0.13	0.75±0.03	15.30±0.45	1.25±0.04
沈阳同联151004	1.60±0.06	1.01±0.03	25.55±0.60	4.01±0.14
沈阳同联151005	1.52±0.05	1.02±0.03	25.30±0.57	4.05±0.20
沈阳同联151006	1.52±0.05	1.00±0.04	25.81±0.53	4.50±0.18

按1.2.1.1方法测定批号为1509559的莨菪浸膏片中的4种组分,并向样品中准确加入高中低3种浓度的标准溶液,每组浓度平行3份,计算回收率,测定结果如表3所示,平均回收率在98.3%~100.0%之间,RSD小于2.8%。

3 讨论

3.1 检测波长 东莨菪碱等3种生物碱均是末端吸收,而东莨菪内酯的最大吸收波长是220和350 nm。当检测波长小于210 nm时,基线不平稳,干扰较明显;当波长大于220 nm,4种成分的紫外吸收又明显减弱。综合考虑,检测波长设为215 nm。

组分	测得 量/µg	加入 量/μg	测得 量/µg	平均 回收率/%	RSD/ %
东莨菪碱	3.23	1.60	4.80	98.3	0.97
		3.20	6.35		
		4.80	8.00		
山莨菪碱	0.75	0.38	1.12	98.8	2.58
		0.75	1.48		
		1.13	1.90		
阿托品	15.30	7.60	22.85	99.1	0.64
		15.30	30.35		
		22.90	38.10		
东莨菪内酯	1.25	0.62	1.85	100.0	2.79
		1.25	2.52		
		1.87	3.15		

- 3.2 提取溶剂 比较了相同的超声时间和条件下,甲醇、水和0.05 mol/L硫酸溶液等3种溶剂的提取率和样品出峰情况。参考文献[14]并试验发现,利用0.05 mol/L硫酸溶液提取阿托品等生物碱,样品干扰少且重复性较好,但是东莨菪内酯提取率较低;甲醇作为溶剂可以兼顾所有目标成分的提取,但溶剂与流动相极性差别较大导致色谱峰拖尾严重;故我们在用甲醇提取样品后加入同体积的0.05 mol/L硫酸溶液,从而满足我们分析要求。
- 3.3 流动相 实验中我们考虑了甲醇-水、甲醇-0.05%磷酸溶液(15:85和20:80)等度洗脱,虽然东莨菪碱和山莨菪碱的出峰时间较快,但是与相邻杂质峰无法完全分离;而东莨菪内酯则在40min左右出峰,整体分析时间较长。考虑到包括东莨菪碱在内的几种生物碱极性相近,我们将起始甲醇比例降为3%,采用梯度洗脱,到35min时,甲醇的比例提高到25%,4种成分在30min出峰完毕,峰形对称无干扰;而后调整有机相比例,使弱极性组分快速洗脱完毕。

4 结论

相比文献[12,14],本研究增加了样品中东莨菪内酯的分离测定,并且将分析时间大幅度缩短至50 min。本研究采用甲醇提取莨菪浸膏片中的有效成分,促使弱极性的东莨菪内酯有效溶出;而后再同比例加入酸水,减小了溶剂与流动相极性的差别从而兼顾了峰形。莨菪浸膏片原有标准中无含量测定项目,鉴别项目涉及的是托烷类生物碱,没有针对性。本研究所述方法对莨菪浸膏片中4种组分进行了分离测定,控制了该药品非法添加化学原料

的问题,可用于莨菪浸膏片的质量控制。

参考文献

- [1] 吴少平,柳小秦,罗晶,等.莨菪浸膏片质量标准研究[J].药物分析杂志,2008,28(8):1319-1322.
- [2] 方海红,朱益雷,魏惠珍,等.离子液体作流动相添加剂高效液相色谱法分离莨菪类生物碱[J].分析测试学报,2016,35(5):614-617
- [3] 曹振民,王超众,刘磊,等.高效液相色谱法测定氢溴酸山莨菪碱注射液的含量和有关物质[J].医药导报,2014,33(6):797-799
- [4] 陈妤, 闫晓楠, 杨晓宏. HPLC法同时测定华山参中山莨菪碱、东莨菪碱、阿托品的含量[J]. 药学研究, 2015, 34(4): 209-211.
- [5] 张磊,白青山,王亮.复方颠茄口服溶液中硫酸阿托品含量测定及质量标准研究[J].药物分析杂志,2013,33(8):1407-1410.
- [6] 柯月娇,黄桂华,张苏娜,等.非水毛细管电泳法测定山莨菪中4 种莨菪烷类生物碱[J].福州大学学报(自然科学版),2016,44 (5):723-727.
- [7] 秦国富,李恒新,李永波,等.液液萃取-气相色谱-质谱联用法同时测定曼陀罗中的消旋山莨菪碱、东莨菪碱与(-)-莨菪碱[J].中国食品卫生杂志,2014,26(4):351-354.
- [8] 王海燕,姜连阁,王继双,等.液相色谱-串联质谱法同时测定畜 肉中阿托品、山莨菪碱、东莨菪碱、普鲁卡因和利多卡因残留 量[J].食品安全质量检测学报,2018,9(15):4043-4049.
- [9] 段科,刘刚,周凯,等.超高效液相色谱-串联质谱法检测生肉中的阿托品和山莨菪碱[J].食品安全质量检测学报,2017,8 (12):4841-4846.
- [10] 佘彩蒙,杜鸿雁,王芳琳,等.超高效液相色谱-串联质谱法检测 全血中的东莨菪碱和阿托品[J].刑事技术,2017,42(2):133-136.
- [11] 刘云,杨玉忠.超高效液相色谱-质谱联用定性定量测定硫酸阿托品片[J].中国卫生检验杂质,2019,29(18):2194-2197.
- [12] 丁琳,戴涌,刘雪峰,等.—测多评法同时测定莨菪浸膏片中3个生物碱的含量[J].药物分析杂志,2018,38(4):696-702.
- [13] 高武,吴勇.高效液相色谱法测定硫酸阿托品的含量[J].安徽 医药,2016,20(7):1279-1281.
- [14] 丁琳,戴涌,杨亚婷,等.莨菪浸膏片HPLC指纹图谱及莨菪烷类生物碱的定量分析研究[J].中草药,2018,49(7):1583-1587.
- [15] 刘云,杨玉忠.超高效液相色谱-串联质谱法定性定量检测中成 药及保健食品中非法添加的 17种化学药物[J].安徽医药, 2020,24(1):82-86.
- [16] 张文婷, 黄伟, 程维明, 等. 颠茄流浸膏和颠茄浸膏非法勾兑快速筛查[J]. 医药导报, 2013, 32(5); 670-672.
- [17] 黄伟,张文婷,赵维良,等.颠茄流浸膏真伪鉴别及含量测定方法研究[J].药物分析杂志,2012,32(1):151-154.
- [18] 褚子璇,卢敏,熊山.东茛菪内酯的药理活性及药代动力学研究进展[J].化学研究,2019,30(4):434-440.
- [19] 刘瑾林,周红,郭富友,等.香豆素类化合物的农药活性及东莨菪内酯杀螨作用机理研究进展[J].农药学学报,2019,21(5):692-708.

(收稿日期:2018-09-09,修回日期:2020-02-23)