doi:10.3969/j.issn.1009-6469.2020.05.005

◇药物分析◇

高效液相色谱-串联质谱法同时测定五味子糖浆中 7种木脂素的含量

吴子静1,梁大虎2,杨斌2,谢海棠2

作者单位:¹皖南医学院,安徽 芜湖241002;²皖南医学院第一附属医院弋矶山医院、 安徽省药物临床评价中心,安徽 芜湖241001

通信作者:谢海棠,女,教授,硕士生导师,研究方向为药物代谢动力学,E-mail:xiehaitang@sina.com 基金项目:皖南医学院中青年科研基金(WK2018F05)

摘要:目的 建立一种高效液相色谱-串联质谱(HPLC-MS/MS)同时测定五味子糖浆中7种木脂素成分含量的方法。方法 采用 Agilent ZORBAX Eclipse XDB- C_{18} (4.6 mm×150 mm,5 μ m)色谱柱,以90% 甲醇(含0.1% 甲酸)-水(含0.1% 甲酸,5 mmol 乙酸铵)为流动相,流速 0.5 mL/min,柱温 30 $^{\circ}$ C,进样量:10 μ L;采用电喷雾电离源(ESI),正离子扫描,多反应离子监测模式(MRM)进行定量分析。结果 五味子糖浆中7种木脂素成分分离度良好,在测定范围内线性关系均良好(r>0.995),平均回收率分别为98.66%,92.41%,95.15%,100.46%,96.67%,100.94%,98.83%。结论 该方法快速、灵敏、可靠,可满足五味子糖浆中五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚和五味子酯甲的含量测定。

关键词:木脂素类: 色谱法,高压液相: 串联质谱法: 五味子糖浆: 液相-质谱联用: 含量测定

Simultaneous determination of seven lignan components in *Wuweizi* syrup by HPLC-MS/MS

WU Zijing¹, LIANG Dahu², YANG Bin², XIE Haitang²

Author Affiliations: Wannan Medical College, Wuhu, Anhui 241002, China; Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Anhui Provincial Centre for Drug Clinical Evaluation, Wuhu, Anhui 241001, China

Abstract; Objective To establish a method for simultaneous determination of seven lignan components in *Wuweizi* syrup by HPLC-MS/MS.**Methods** The chromatographic separation was performed on a Agilent ZORBAX Eclipse XDB-C18 (4.6 mm×150 mm, 5 μ m) column with the mobile phase consisting 90% methanol (containing 0.1% formic acid)-water (containing 0.1% formic acid, 5 mmol ammonium acetate) at a flow rate of 0.5 mL/min, the column temperature was 30 °C and the injection volume was 10 μ L.An electrospray positive ion multiple reaction monitoring (MRM) was used as a detector. **Results** The seven lignan components in *Wuweizi* syrup had good separation and good linearity in the determination range (r > 0995). The average recoveries were 98.66%, 92.41%, 95.15%, 100.46%, 96.67%, 100.94% and 98.83%, respectively. **Conclusion** This method is rapid, sensitive and reliable, which can be used to determine the content of schisandrin, schisandrol B, deoxyschizandrin, schizandrin B, schizandrin C, schisanhenol and schisantherin A in *Wuweizi* syrup.

Key words: Lignans; Chromatography, high pressure liquid; Tandem mass spectrometry; Wuweizi syrup; HPLC-MS/MS; Content determination

作为著名的中药,五味子始载于《神农本草经》,列为上品,具有滋阴养气作用[1-2]。《新修本草》中记载五味子果肉和果皮酸甜,而种子苦辣,一起食用,有咸、甜、酸、辛辣和苦味,所以五味子又被称为"五味果"或"五味子"[3]。五味子是中国处方中常见成分,现收录于2015年版《中国药典》第一部,并以五味子醇甲作为其质量标准[4]。现代药理研究表明,五味子含有木脂素[5]、挥发油[6]、有机酸[7]、维生素[8]、萜类[9]、多糖[10]等化学成分,但其大部分生物

和药理作用可归因于其木脂素成分,含量高达8%,特别是二苯并环辛二烯型木脂素,可降低血清谷氨酸-丙酮酸转氨酶(SGPT)水平,抑制血小板聚集,显示出抗氧化,钙拮抗,抗肿瘤和抗人类免疫缺陷病毒(HIV)等作用[11-12]。

五味子糖浆由五味子单味药材组成,用于肾精不足,气血亏虚引起的神经衰弱、头晕、失眠^[13]。目前,关于五味子糖浆中木脂素的含量测定已有文献报道,但只对其中一种或两种木脂素成分含量进行

了测定,难以全面反映五味子糖浆中木脂素的质量^[14-16],且文献均采用高效液相色谱(HPLC)法,采用高效液相色谱-串联质谱(HPLC-MS/MS)法同时测定五味子糖浆中五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚和五味子酯甲这7种木脂素的分析方法尚未见报道。本实验自2018年1月至2019年1月采用HPLC-MS/MS法同时测定五味子糖浆中7种木脂素成分的含量,该方法简便、快捷、可靠,为有效控制五味子糖浆产品质量提供了方法。

1 仪器与试药

API 3200 质谱仪, Analyst 1.6.2 质谱数据处理软件(美国应用生物系统公司), Shimadzu LC-20AD二元泵, SIL-HTc 自动进样器, CTO-10ASvp柱温箱(日本岛津公司); IKA-Werke Typ VX 2E型摇床(德国仪科公司); METTLER TOLEDO ME55 微量分析天平; Millipore Direct-Q3型纯水仪(美国密理博公司); 高速离心机[赛默飞世尔科技(中国)有限公司]。

五味子醇甲(批号:110857-201211,含量:99.9%)、五味子甲素(批号:110764-201111,含量:99.3%)购于中国食品药品检定研究院;五味子醇乙(批号:P28S6F3984,含量:98%)、五味子乙素(批号:P29J8F38066,含量:98%)、五味子丙素(批号:P28J8F36916,含量:98%)、五味子商制(批号:P1308F45574,含量:98%)、五味子酯甲(批号:P1308S45575,含量:98%)均购于上海源叶生物科技有限公司;内标联苯双酯(批号:C10105842,含量:98%),购于上海麦克林生化科技有限公司;五味子糖浆均为药店销售的产品[上海海虹实业(集团)巢湖今辰药业有限公司,批号:170511,180203,180510]。乙酸铵分析纯(上海四试赫维化工有限公司);甲醇、甲酸为色谱纯(德国默克公司);水为去离子超纯水。

2 方法与结果

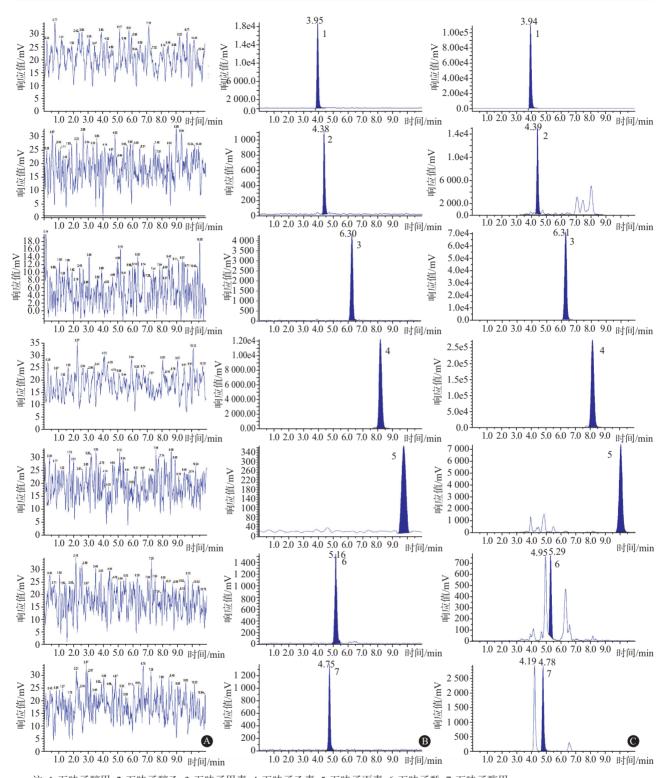
2.1 色谱及质谱条件

2.1.1 色谱条件 Agilent ZORBAX Eclipse XDB-C₁₈ (4.6 mm×150 mm,5 μm)色谱柱,流动相:90%甲醇(含 0.1%甲酸)-水(含 0.1%甲酸,5 mmol/L乙酸铵),等度

洗脱,流速为0.5 mL/min,柱温:30 ℃,进样量:10 μL。 2.1.2 质谱条件 采用电喷雾电离源(ESI),正离子

2.1.2 质谱条件 采用电喷雾电离源(ESI),正离子扫描,多反应离子监测模式(MRM)进行定量分析。7种木脂素成分的质谱参数见表1。

2.2 溶液的配制


- 2.2.1 对照品溶液的配制 分别精密称取五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚和五味子酯甲对照品适量,用甲醇配制成浓度分别为1.22、0.45、1.16、0.58、0.51、0.54、0.53 g/L的单一对照品储备液;分别精密量取各对照品储备液适量置10 mL容量瓶中,用甲醇稀释至刻度,分别得到五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚、五味子酯甲质量浓度为40.00、9.02、5.00、11.64、5.13、5.40、5.26 mg/L的混合对照品储备液;所有溶液均4℃保存。
- 2.2.2 内标溶液的配制 精密称取联苯双酯对照品适量,用甲醇溶解配制成浓度为0.73 g/L的内标储备液。使用时,用甲醇进一步稀释成浓度为500 μg/L,作为内标溶液,4℃保存。
- 2.2.3 供试品溶液的配制 精密吸取五味子糖浆 100 μL,置10 mL离心管中,用50%甲醇水稀释100倍,超声提取15 min,0.45 μm 微孔滤膜连续过滤两次,12 000 r/mim离心5 min,取续滤液,即得。

2.3 方法学考察

- 2.3.1 专属性 分别精密吸取空白溶剂、对照品溶液和供试品溶液各10 μL,按"2.1"项下 HPLC-MS/MS条件进行测定。在此色谱条件下五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚、五味子酯甲和联苯双酯的出峰时间分别为3.94、4.38、6.30、8.17、9.78、5.16、4.75、3.46 min。空白溶剂、对照品及五味子糖浆供试品溶液的色谱图见图1。
- 2.3.2 线性关系考察及定量下限测定 甲醇稀释上述混合对照品储备液,得到系列混合对照品的工作液。其中五味子醇甲的线性浓度为125.00、250.00、500.00、1000.00、2000.00和4000.00μg/L,五味子醇乙的线性浓度为28.18、56.35、112.70、225.40、450.80和901.60μg/L,五味子甲素的线性浓

表1	7种不脂紊成分的质谱分析参数

成分	分子式	母离子/(m/z)	子离子/(m/z)	去簇电压(DP)/V	碰撞电压(CE)/V	入口电压(EP)/V	碰撞室出口电压(CXP)/V
五味子醇甲	C24H32O7	433.4	384.3	45	29	6	7
五味子醇乙	$C_{23}H_{28}O_7$	399.4	368.2	90	31	9	8
五味子甲素	$C_{24}H_{32}O_6$	417.5	316.1	92	30	11	6
五味子乙素	$C_{23}H_{28}O_6$	401.2	300.2	86	35	11	7
五味子丙素	$C_{22}H_{24}O_6$	385.3	284.9	98	30	9	9
五味子酚	$C_{23}H_{30}O_6$	403.2	340.0	118	30	8	6
五味子酯甲	$C_{30}H_{32}O_{9}$	559.3	415.3	104	29	6	8
联苯双酯	$C_{20}H_{18}O_{10}\\$	387.1	328.3	76	28	9	6

注:1. 五味子醇甲;2. 五味子醇乙;3. 五味子甲素;4. 五味子乙素;5. 五味子丙素;6. 五味子酚;7. 五味子酯甲 **图1** 空白溶剂、对照品及五味子糖浆供试品色谱图; A为空白溶剂; B为对照品; C为供试品

度为 15.63、31.25、62.50、125.00、250.00 和 500.00 $\mu g/L$,五味子乙素的线性浓度为 36.38、72.76、 145.53、291.05、582.10 和 1 164.20 $\mu g/L$,五味子丙素的线性浓度为 16.02、32.03、64.06、128.13、256.25 和 512.50 $\mu g/L$,五味子酚的线性浓度为 16.02、32.03、 64.06、128.13、256.25 和 512.50 $\mu g/L$,五味子酯甲的线性浓度为 16.45、32.89、65.78、131.57、263.13 和

526.26 μg/L, 所有溶液均按"2.1"项下 HPLC-MS/MS 条件进行测定, 记录各分析物的峰面积 A_s和内标联 苯双酯的峰面积 A_{Is}, 以 A_s与 A_{Is}的比值 F 为纵坐标, 浓度 X 为横坐标, 作加权线性回归计算(权重系数为 1/X²), 五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚和五味子酯甲的回归方程、回归系数等参数见表 2。这7种木脂素的定

成分

	• •							
五味子醇甲	妹子醇甲 125.00~4 000.00 $y = 0.004 \ 45x + 0.002 \ 53$			0.998 3		1.00	1	125.0
五味子醇乙 $28.18 \sim 901.60$ $y = 0.00151x - 0.00523$			(0.996 9		2.00	2	28.18
五味子甲素 15.63 ~ 500.00 $y = 0.012 3x + 0.024 2$			(0.997 7		2.00	1	15.63
五味子乙素	36.38 ~ 1 164.20	y = 0.017 8x + 0.168	(0.997 7		1.00	3	36.38
五味子丙素	16.02 ~ 512.50	$y = 0.004 \ 29x + 0.006 \ 14$. (0.998 3		5.00	1	16.02
五味子酚	16.88 ~ 540.00	$y = 0.001 \ 15x - 0.003 \ 66$,	0.997 3		5.00	1	16.88
五味子酯甲	16.45 ~ 526.26	y = 0.00275x + 0.0162	(0.997 0		5.00	1	16.45
量限(LOQ)	分别为 125.00、28.1		表	3 回收3	率试验结果			
	和16.45 μg/L,信噪比S 度试验 按"2.1"项下	成分	原有量/ (mg/L)	加入量/ (mg/L)	平均测得 量(n=3)/ (mg/L)	平均 回收 率/%	相对标准 偏差 (n=9)/%	
件对同一混合			140.10	305.59				
7. 五味子田	五味子醇甲	175.22	175.20	357.28	98.66	2.86		

表2 7种木脂素成分线性范围、回归方程、检测限和定量限

回归方程

线性范围/(μg/L)

乙、五味于甲素、五味于乙素、五味于内素、五味于酚 和五味子酯甲浓度分别为:1000.00、225.40、125.00、 291.05、128.13、135.00和131.57 μg/L)重复进样6次, 五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、 五味子丙素、五味子酚和五味子酯甲的相对标准偏 差(RSD, n=6)分别为2.17%、2.01%、1.68%、1.47%、 0.97%、1.19%和1.30%,说明仪器精密度良好。

2.3.4 重复性试验 取同一批五味子糖浆样品6份 (批号170511),按照"2.2.3"项下方法制备供试品溶 液,按"2.1"项下HPLC-MS/MS条件进行测定。测得 五味子糖浆中五味子醇甲、五味子醇乙、五味子甲 素、五味子乙素、五味子丙素、五味子酚、五味子酯 甲含量平均值分别为175.22、33.47、29.42、90.21、 11.01、2.93、3.65 mg/L,相对标准偏差(RSD,n=6)分 别为 2.10%、1.58%、2.26%、1.34%、1.74%、1.67%、 2.32%,表明重复性良好。

2.3.5 稳定性试验 取同一份供试品溶液(批号 170511),分别于0、2、4、6、8、10、12、24 h按"2.1"项 下 HPLC-MS/MS 条件进行测定。测得五味子糖浆中 五味子醇甲、五味子醇乙、五味子甲素、五味子乙 素、五味子丙素、五味子酚、五味子酯甲的相对标准 偏差(RSD, n=8)分别为 1.61%、2.06%、1.44%、 1.53%、2.10%、1.62%、0.97%,结果表明,供试品溶液 在24 h内基本稳定。

2.3.6 加样回收率试验 取9份已知7种木脂素含 量的五味子糖浆(批号170511),按7种木脂素含量的 80%、100%、120%添加混合对照品溶液后按"2.2.3" 项下制备供试品溶液,每种比例各配制3份,按"2.1" 项下HPLC-MS/MS条件进行测定,结果见表3。

2.4 样品含量测定 精密量取3个批号的五味子糖 浆(批号170511、180203,180510)各6份,按"2.2.3"项下 制备供试品溶液,按"2.1"项下HPLC-MS/MS条件进行 测定,各批号五味子糖浆中7种待测物含量结果见表4。

	西 士里,	to 1 E,	平均测得	平均	相对标准
成分	原有量/ (mg/L)	加入量/ (mg/L)	量 $(n=3)$ /	回收	偏差
	(Ilig/L	(IIIg/L	(mg/L)	率/%	(n=9)/%
		140.10	305.59		
五味子醇甲	175.22	175.20	357.28	98.66	2.86
		210.20	374.26		
		26.70	56.35		
五味子醇乙	33.47	33.40	62.06	92.41	1.48
		40.10	66.78		
		23.50	49.53		
五味子甲素	29.42	29.40	56.19	95.15	1.41
		35.30	62.35		
		72.10	162.97		
五味子乙素	90.21	90.20	176.84	100.46	2.46
		108.20	204.26		
		8.80	18.49		
五味子丙素	11.01	11.00	21.68	96.67	2.88
		13.20	23.76		
		2.30	5.06		
五味子酚	2.93	2.90	6.02	100.94	3.63
		3.50	6.61		
		2.90	6.74		
五味子酯甲	3.65	3.60	7.05	98.83	3.55
TT心L 1 目目.1.	3.03		7.66	70.03	5.55
		4.30	7.00	_	

LOD/(µg/L)

 $LOQ/(\mu g/L)$

表4 7种木脂素成分含有量测定结果/(mg/L,n=6)

批号				五味子 乙素			
170511	177.87	33.56	29.17	88.85	11.30	2.83	3.76
180203	182.48	36.74	30.54	92.30	11.63	3.27	4.07
180510	169.21	30.56	27.55	82.42	10.31	2.46	3.58

3 讨论

3.1 色谱质谱条件的确定

3.1.1 色谱条件的确定 参考国内外文献并结合待 测物的物理化学性质,考察了3种色谱柱 Agilent Zorbax SB-C₁₈(50 mm×3.0 mm, 3.5 μm)^[17] Agilent ZORB-AX Eclipse XDB-C₁₈(4.6 mm×150 mm, 5 μm)^[18] 和 Waters ACQUITY HSS T3 (2.1 mm×100 mm, 1.8 μm)^[19], 以比较色谱峰峰形、分离度;对于流动相的选择,首先 考察了乙腈-水和甲醇-水两种体系,结果表明与乙腈- 水体系相比甲醇-水体系分离度更好,然后考察甲醇-水体系下加入甲酸、乙酸铵等酸的影响;同时还考察了流速、柱温和不同进样量,结果表明当流速为0.5 mL/min、柱温30 °C、进样量为10 µL时,五味子中7种待测物的色谱峰峰形较好,可以与周围干扰物质达到良好的基线分离。所以最后确定采用 Agilent ZORB-AX Eclipse XDB-C₁₈(4.6 mm×150 mm,5 µm)色谱柱,90% 甲醇(20.1% 甲酸)-水(20.1% 甲酸,20.5% mmol 乙酸铵)系统,流速为20.5% mL/min,柱温:20%,进样量:20%,流速为20%,流速为20%,流速时间分别为20%,20%,20%

- 3.1.2 质谱条件的确定 本实验分别将各待测分析物及内标配制成5 mg/L的溶液,用于注射泵连续进样,以优化质谱参数。采用电喷雾电离源(ESI),多反应离子监测模式(MRM)进行定量分析,并比较了正离子和负离子模式下离子峰强度,结果表明正离子条件下离子峰更稳定、强度最好。在正离子模式下,根据先前选定的母离子、子离子,组成离子对,做MRM扫描,分别优化DP、EP、CE、CXP等参数。
- 3.2 小结 五味子在我国已有几千年的历史,《神农本草经》将五味子列为上品。近年来五味子及含有五味子的复方制剂应用越来越广泛,但查阅五味子糖浆中木脂素含量测定的相关文献,发现只对其中一种或两种木脂素成分含量进行了测定,难以全面反映五味子糖浆中木脂素的质量。本研究采用 HPLC-MS/MS同时测定五味子糖浆中7种木脂素成分的含量。

2015年版《中国药典》第一部五味子糖浆"含量测定"项下规定,每1 mL五味子糖浆含五味子以五味子醇甲(C₂₄H₃₂O₇)计,不得少于 0.12 mg。由含量测定结果可以看出 3 批五味子糖浆(批号:170511、180203、180510)中五味子醇甲的含量均符合药典标准。五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素、五味子酚、五味子酯甲在一定范围内线性关系良好(r>0.995),加样回收率在92.41%~100.94%之间,该 HPLC-MS/MS 方法可在11 min 内快速分离检测出五味子糖浆中的7种木脂素成分,方法简单、灵敏、准确,可为五味子糖浆的全面质量控制提供科学依据。

参考文献

- [1] 刘宇灵,付赛,樊丽姣,等.南北五味子化学成分、药理作用等方面 差异的研究进展[J].中国实验方剂学杂志,2017,23(12):228-234.
- [2] 代晓光,宋琳.五味子现代药理作用及临床应用研究进展[J]. 中医药信息,2017,34(5):121-124.
- [3] LI ZJ, HE X, LIU F, et al. A review of polysaccharides from schisandra chinensis and schisandra sphenanthera: properties, functions and applications[J]. Carbohydrate polymers, 2018, 184:

- 178-190
- [4] 国家药典委员会.中华人民共和国药典(一部)[S].北京:中国 医药科技出版社,2015.
- [5] WANG JY, JIANG B, SHAN YY, et al. Metabolic mapping of Schisandra chinensis lignans and their metabolites in rats using a metabolomic approach based on HPLC with quadrupole time-offlight MS/MS spectrometry [J]. Journal of Separation Science, 2020,43(2):378-388.
- [6] YANG BY, LIU B, LIU Y, et al. Cognitive enhancement of volatile oil from the stems of schisandra chinensis baill.in alzheimer's disease rats [J]. Canadian Journal of Physiology and Pharmacology, 2018,96(6):550-555.
- [7] YIN FZ, DAI H, LI L, et al. Study of organic acids in schisandrae chinensis fructus after vinegar processing [J]. Journal of Separation Science, 2017, 40(20):4012-4021.
- [8] FROLOVA NA, REZNICHENKO IY. Investigation of the chemical composition of fruit and berry raw materials of the far eastern region as a perspective source of nutrients and bioactive compounds [J]. Voprosy Pitaniia, 2019, 88(2):83-90.
- [9] QIU F, LIU H, DUAN H, et al. Schisandra chinensis isolation, structural elucidation of three new triterpenoids from the stems and leaves of (turcz) baill[J]. Molecules (Basel, Switzerland), 2018,23(7):1624-1630.
- [10] CHEN XY, TANG R, LIU TT, et al. Physicochemical properties, antioxidant activity and immunological effects in vitro of polysaccharides from schisandra sphenanthera and schisandra chinensis [J]. International Journal of Biological Macromolecules, 2019, 131;744-751.
- [11] LU Y, CHEN DF. Analysis of schisandra chinensis and schisandra sphenanthera [J]. Journal of Chromatography A, 2009, 1216(11): 1980-1990.
- [12] ANDREI M, GIANINA C, LAURIAN V, et al. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra Chinensis leaves and fruits [J]. Molecules, 2014, 19(9):15162-15179.
- [13] 佟志军,魏晓雨,王美慧,等.五味子糖浆原药材、中间体及成品的 HPLC指纹图谱相关性研究[J].中草药,2016,47(17);3032-3038.
- [14] 王杰姝,梁军,夏永刚,等.五味子糖浆中五味子木脂素类成分的含量测定[J].中医药学报,2014,42(6):11-13.
- [15] 宋博,孙玉坤,田洁,等.HPLC法同时测定五味子糖浆中五味子 酯甲和五味子甲素的含量[J].武警医学,2018,29(3):267-269.
- [16] 卢德刚,姚洪艳.HPLC法测定五味子糖浆中五味子醇甲的含量 [J].黑龙江医药,2008,21(4):6-7.
- [17] MAO SL, ZHANG H, LV L, et al. Rapid determination and pharmacokinetics study of lignans in rat plasma after oral administration of Schisandra chinensis extract and pure deoxyschisandrin [J]. Biomedical chromatography, 2011, 25(7):808-815.
- [18] 满缓,张凤,熊晓娟,等.HPLC法同时测定五酯胶囊中5种成分的含量[J].宜春学院学报,2018,40(12);22-25.
- [19] SUN H, WU FF, ZHANG AH, et al. Pharmacokinetic study of schisandrin, schisandrol B, schisantherin A, deoxyschisandrin, and schisandrin B in rat plasma after oral administration of Shengmaisan formula by UPLC-MS[J]. Journal of Separation Science, 2013,36(3):485-491.

(收稿日期:2019-03-21,修回日期:2019-05-07)