引用本文:程友斌,王政,褚朝森,等.绵马贯众及其伪品的红外指纹图谱鉴别[J].安徽医药,2022,26(9):1739-1743.DOI:10.3969/j.issn.1009-6469.2022.09.010.

◇药物分析◇

绵马贯众及其伪品的红外指纹图谱鉴别

程友斌,王政,褚朝森,孙静 作者单位:江苏联合职业技术学院连云港中医药分院,江苏 连云港222007

摘要: 目的 建立绵马贯众的红外指纹图谱和化学模式识别模型,为绵马贯众的质量评价和控制方法提供新的参考。方法 自2019年10月至2020年11月期间,应用红外光谱技术结合二阶导数、相似度计算、聚类分析和主成分分析方法对红外谱图进行分析。结果 绵马贯众9批样品相似度在0.96以上,在红外谱图1554~1494 cm⁻¹波段可将正伪品进行区分,聚类分析中在欧式距离平方和为5时绵马贯众与所有伪品清晰归为5类,结果与二阶导数和主成分分析相一致。结论 利用建立的绵马贯众及其伪品红外光谱图与化学模式识别模型,可快速评定不同产地绵马贯众的一致性和真伪性,适用于对绵马贯众质量的评价。

关键词: 鳞毛蕨科; 主成分分析; 绵马贯众; 红外光谱; 鉴别; 聚类分析

Identification of infrared fingerprints of *Rhizoma Dryopteris Crassirhizomae* and its counterfeit products

CHENG Youbin, WANG Zheng, CHU Chaosen, SUN Jing

Author Affiliation:Lianyungang Chinese Medicine Branch of Jiangsu United Vocational and Technical College, Lianyungang, Jiangsu 222007, China

Abstract: Objective An infrared fingerprint and chemical pattern recognition model of *Rhizoma Dryopteris Crassirhizomae* was established to provide a new reference for quality evaluation and control methods. **Methods** From October 2019 to November 2020, the infrared spectra were analyzed using infrared spectroscopy techniques combined with second derivative, similarity calculation, cluster analysis and principal component analysis. **Results** The similarity of the 9 batches of samples of *Rhizoma Dryopteris Crassirhizomae* is above 0.96 and the genuine and fake products can be distinguished in the infrared spectrum of 1 554 cm⁻¹ to 1 494 cm⁻¹. In the cluster analysis, when the sum of squares of the Euclidean distance is 5, all the fakes of *Rhizoma Dryopteris Crassirhizomae* are clearly classified into 5 categories, and the results are consistent with the second derivative and principal component analysis. **Conclusion** Using the established infrared spectra and chemical pattern recognition model of *Rhizoma Dryopteris Crassirhizomae* and its fake products, the consistency and authenticity of *Rhizoma Dryopteris Crassirhizomae* in different origins can be quickly assessed, which is suitable for evaluating the quality of *Rhizoma Dryopteris Crassirhizomae*.

Key words: Dryopteridaceae; Principal component analysis; *Rhizoma Dryopteris Crassirhizomae*; Infrared spectroscopy; Identification; Cluster analysis

绵马贯众为鳞毛蕨科植物粗茎鳞毛蕨带叶柄残基的干燥根茎,始载于《神农本草经》,列为下品,其味苦,性微寒,有小毒,具有清热解毒和驱虫等功效¹¹,主产于黑龙江、吉林等地,临床用于治疗疫毒感冒,虫积腹痛等疾患,现代药理研究表明其有抗病毒、抗肿瘤和抗菌等作用,在国家《新型冠状病毒肺炎诊疗方案》中有推荐使用。近几版《中国药典》均将绵马贯众予以单列,然而因绵马贯众药源植物历史构成较为混乱,曾用作贯众的原植物有11科18属58种之多^[2],经过长期考证和市场规范,目前市场上仍有约5种以上植物的根茎被混充作绵马贯众使用,他们在外观形态特征上与绵马贯众十分相

似,非鉴别经验丰富者不能准确感官鉴定,常规理化鉴别如紫外可见光谱法(UV)、聚合酶链式反应(PCR)、高效液相色谱法(HPLC)等质量控制方法[34]均存在样品处理程序复杂、耗时费力、难以完全满足生产一线对其快速鉴别的需要,而红外光谱法可从整体上把握中药体系成分,具有取样量小、快速、准确,以及专属性和特征性强等特点[59],可较好填补绵马贯众的这一实际需求,目前国内关于绵马贯众的研究[10-11]中尚未见到应用红外光谱法鉴别绵马贯众正伪药材的报道,亦鲜见使用红外光谱对5种伪品药材整体进行鉴定的报道。本实验于2019年10月至2020年11月以9个产地绵马贯众与5种伪

品为研究对象,建立绵马贯众的红外指纹图谱,并 结合二阶导数、相似度评价,聚类分析和主成分分 析(PCA),为绵马贯众的鉴别和质量评价提供参考。

1 材料与方法

- 1.1 药材 药材购于吉林敦化、和龙、蛟河、龙井、 汪清、通化、延吉,黑龙江牡丹江和尚志,以及安徽 亳州、河北安国、广西玉林等地,经湖北中医药大学 药学院生药鉴定教研室潘宏林教授鉴定为绵马贯 众、峨嵋蕨贯众、鳞毛蕨贯众、单芽狗脊蕨贯众、狗 脊蕨贯众和苏铁蕨贯众。凭证标本存于江苏省连 云港中医药高等职业技术学校中医药博物馆,基源 鉴定结果见表1。
- 1.2 仪器与试剂 傅里叶变换红外光谱仪(日本 SHIMADZU公司,型号IRPrestige-21),DLATGS检测 器、XS105DU十万分之一电子分析天平(METTLER TOLEDO公司),HY-12粉末压片机(天津天光光学 仪器有限公司),电热恒温鼓风干燥箱(DHG-9240A 上海精宏实验设备有限公司),玛瑙研钵(阜新县伟 成玛瑙厂);溴化钾(光谱纯,天津市福晨化学试 剂厂)。

1.3 方法

1.3.1 供试品的制备 取9份不同产地绵马贯众样 品,以及峨眉蕨贯众、鳞毛蕨贯众、单芽狗脊蕨贯 众、狗脊蕨贯众和苏铁蕨贯众等5种伪品各一份于 60 ℃干燥 4 h,粉碎后过 200 目筛,得到饮片粉末备 用。取样品粉末2 mg至玛瑙研钵中,加入120 ℃干 燥后溴化钾粉末作为分散剂,样品与溴化钾混合比 例为1:200,研磨均匀,取适量研磨后的粉末平铺于 红外压片磨具中,以25 MPa压力压制60 s,取出,对 光检视,以样片均匀,半透明为合格,作为供 试品[12]。

1.3.2 红外光谱分析条件 将制备好的供试品压 片置于红外光谱仪中测定,测定波数段为4000~ 400 cm⁻¹,扫描信号累加 20次,分辨率为 4 cm⁻¹,室内 温度与湿度分别控制在24℃和25%~35%,扫描室 实时扣除水和二氧化碳的干扰。扫描完成后,使用 OMNIC8.2扣除背景,并进行基线校正和自动平滑处 理,计算各样品的二阶导数红外光谱平滑点数为 17点。

1.3.3 方法学考察

- 1.3.3.1 精密度实验 从14份供试品中随机取一 份按"1.3.1"项下制备方法压片,测定,连续扫描6 次,以所得红外光谱数据相似度为评价指标,评价 仪器的精密度。结果6次所测光谱相似度均在0.99 以上,显示红外光谱仪精密度状态良好。
- 1.3.3.2 重现性实验 从14份供试品中随机取一 份按"1.3.1"项下制备方法,平行压片6份,分别测 定,以所得红外光谱数据相似度为评价指标,评价 实验方法重现性。结果6份样品光谱数据相似度均 在0.98以上,表明本实验方法重现性良好。
- 1.3.3.3 稳定性实验 从14份供试品中随机取一 份按"1.3.1"项下制备方法压片,供试品置于干燥器 中,分别在0、1、2、3、4、5h时各测试1次,汇总光谱 图,并以所得红外光谱数据相似度为评价指标,评 价实验方法稳定性。结果6个时段测定的光谱数据 相似度均在0.98以上,反映供试品在6h内稳定性 良好。

2 结果

2.1 共有峰确定与伪品原始光谱之间的比较分 析 将14份供试品按照"1.3.1"项下制备方法分别 压片、测定,得到9个产地绵马贯众光谱结果,通过 对该9批红外光谱的分析和比较,确定了16个共有

	表1	9个产地绵马贯众(S1~S9)及:	5种伪品(W1~W5)来源及鉴定信息	
样品编号	药材名称	基源	植物拉丁学名	产地来源
S1	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林敦化
S2	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林和龙
S3	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林蛟河
S4	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林龙井
S5	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	黑龙江牡丹江
S6	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林汪清
S7	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	黑龙江尚志
S8	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林通化
S9	绵马贯众	鳞毛蕨科粗茎鳞毛蕨	Dryopteris crassirhizoma Nakai	吉林延吉
W1	峨嵋蕨贯众	蹄盖蕨科峨嵋蕨	Lunathyrium acrostichoides (Sw.) Ching	安徽亳州
W2	鳞毛蕨贯众	鳞毛蕨科贯众	Cyrtomium fortunei J.Sm	安徽亳州
W3	单芽狗脊蕨贯众	乌毛蕨科单芽狗脊蕨	Woodwardia unigemmate Nakai	河北安国
W4	狗脊蕨贯众	乌毛蕨科狗脊蕨	Woodwardia japonica (L.f.)Sm.	河北安国
W5	苏铁蕨贯众	乌毛蕨科苏铁蕨	Brainea insignis (Hook.) J.Sm.	广西玉林

峰,分别是530、577、610、705、766、859、1018、1154、1201、1257、1284、1372、1444、1627、2925、3357 cm⁻¹、数据见表2。

将9批绵马贯众红外光谱进行平均计算后作为 共有模式,再与5种伪品原始光谱进行比较分析,结 果显示5个伪品均存在一个吸收尖峰,而1554~1 494 cm⁻¹波段之间,共有模式为一个中等吸收肩峰, 此外1304~1165 cm⁻¹波段共有模式吸收强度小于 伪品,其余波段吸收则均强于所有伪品。为进一步 探索各样品吸收峰之间的差别,本实验又进行了二 阶导数分析。

2.2 二阶导数光谱之间的比较分析 绵马贯众共有模式与5种伪品二阶导数图谱比对见图1,分析结果表明共有图谱与5种伪品在3个不同波段上的吸收峰数目和强度均有不同,其中共有图谱在4000~3500 cm⁻¹波段为中等吸收,在1748~1604 cm⁻¹波段吸收峰数目为4个,5种伪品与此不同。同时,对照原始光谱图形,对1554~1494 cm⁻¹波段之间光谱观察,共有模式与5个伪品在此区间均为峰谷。见表3。

車 2	0个产量炮口贯介(S1	SO)及5种供具(W1.W/5)红外图谱相似度分析结果
7.₹ Z	911 11 111 111 11 11 11 11 11 11 11 11	~39//V 1/14/MARKWI~W1	161 71 KH I TO THE TO THE ACT OF

峰位	波数/cm ⁻¹		吸光度													
序号	1)X 3X/CIII	S1	S2	S3	S4	S5	S6	S7	S8	S9	GYJZ	W1	W2	W3	W4	W5
1	530	0.222	0.251	0.214	0.205	0.213	0.224	0.220	0.293	0.226	0.230	0.214	0.203	0.414	0.207	0.172
2	577	0.335	0.275	0.265	0.235	0.241	0.256	0.249	0.343	0.263	0.274	0.242	0.201	0.446	0.230	0.202
3	610	0.213	0.272	0.257	0.224	0.252	0.265	0.259	0.340	0.257	0.260	0.242	0.199	0.423	0.204	0.192
4	705	0.321	0.226	0.207	0.172	0.230	0.226	0.229	0.300	0.282	0.244	0.182	0.000	0.344	0.144	0.151
5	766	0.213	0.199	0.174	0.138	0.184	0.203	0.174	0.281	0.168	0.193	0.157	0.124	0.327	0.141	0.175
3	823	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.102	0.000	0.000	0.000	0.000
6	859	0.361	0.144	0.095	0.072	0.109	0.166	0.084	0.231	0.095	0.151	0.000	0.000	0.196	0.032	0.072
	1 018	1.000	0.809	0.932	0.813	0.767	0.709	0.726	0.926	0.795	0.831	0.000	0.000	0.973	0.855	0.000
7	1 054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.780	0.632	0.000	0.000	0.762
	1 101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.595	0.000	0.000	0.788
8	1 154	0.744	0.633	0.682	0.625	0.609	0.578	0.569	0.726	0.594	0.640	0.550	0.450	0.694	0.609	0.635
9	1 201	0.477	0.401	0.383	0.368	0.391	0.390	0.362	0.506	0.347	0.403	0.000	0.000	0.404	0.354	0.489
10	1 257	0.533	0.459	0.446	0.433	0.466	0.461	0.441	0.564	0.410	0.468	0.418	0.000	0.436	0.393	0.000
11	1 284	0.465	0.455	0.438	0.427	0.457	0.453	0.432	0.558	0.404	0.454	0.421	0.415	0.434	0.394	0.507
12	1 372	0.579	0.547	0.539	0.526	0.550	0.527	0.518	0.642	0.495	0.547	0.452	0.422	0.451	0.421	0.48
13	1 444	0.627	0.624	0.615	0.608	0.632	0.612	0.605	0.710	0.564	0.622	0.502	0.474	0.511	0.479	0.561
15	1 520	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.337	0.425	0.281	0.279	0.398
14	1 627	0.733	0.756	0.703	0.729	0.818	0.791	0.798	0.816	0.702	0.761	0.691	0.746	0.000	0.000	0.000
15	2 925	0.549	0.738	0.739	0.749	0.698	0.668	0.669	0.779	0.679	0.696	0.521	0.522	0.453	0.549	0.586
16	3 357	0.969	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000
相关系	系数	0.968	0.999	0.995	0.996	0.997	0.995	0.995	0.994	0.996	1.000	0.492	0.369	0.728	0.801	0.168
夹角组	於弦	0.988	1.000	0.998	0.998	0.999	0.998	0.998	0.997	0.998	1.000	0.808	0.744	0.905	0.918	0.680

注:GYJZ为S1~S9各共有峰的吸光度均值。

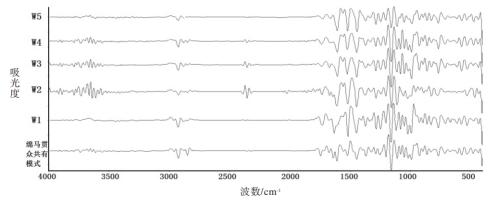


图1 绵马贯众共有模式与5种伪品(W1~W5)红外二阶导数光谱

表3 绵马贯众与5种伪品(W1~W5)的二阶导数图谱特征

样品	$4~000\sim3~500~{\rm cm}^{-1}$	$1~748{\sim}1~604~{\rm cm}^{\text{-}1}$	$1\ 110{\sim}990\ \mathrm{cm}^{\text{-}1}$
任前	吸收强度	吸收峰数目	吸收峰数目
W5	弱吸收	2	2
W4	强吸收	1	4
W3	强吸收	2	4
W2	强吸收	3	2
W1	弱吸收	2	4
绵马贯众	中等吸收	4	4

- 2.3 相似度评价 通过 OMNIC 8.2 对所有供试品 红外光谱进行标峰,得到各吸收峰的波数与吸光度 数值,以9个产地绵马贯众供试品红外光谱中共有 峰吸光度的均值为参照,以夹角余弦和相关系数评 价相似度,分别计算不同产地绵马贯众及5种伪品 的相似度。由表2可知,9个产地绵马贯众之间相似 度很高,相关系数均在0.96以上,夹角余弦也在0.98 以上,说明不同产地绵马贯众饮片质量基本稳定, 具有很好的一致性。同时与峨嵋蕨贯众、鳞毛蕨贯 众、单芽狗脊蕨贯众、狗脊蕨贯众和苏铁蕨贯众之 间表现出较低的相似性,其中相关系数较高的是狗 脊蕨贯众(0.801),狗脊蕨贯众(0.728),夹角余弦计 算结果同样反映绵马贯众与狗脊蕨贯众和单芽狗 脊蕨贯众较为接近,分别为0.918和0.905,同时5种 伪品之间相似度也存在差距,以苏铁蕨贯众差别最 大,此结果与正伪品性状鉴定结果一致。
- 2.4 绵马贯众与各伪品之间的聚类分析 根据表2 红外光谱分析结果,以各峰位的吸光度为变量,采用组间连接方法,选取欧氏平方距离作为区间测度,通过SPSS 22.0作为统计分析软件进行分层聚类分析。结果可知在欧氏距离平方和为5时,可以分

成 5 大类,其中 9 个产地绵马贯众归为一类(S1~S9),单芽狗脊蕨贯众与狗脊蕨贯众归为一类(W3,W4),显示二者亲缘关系较近,而苏铁蕨贯众(W5)、鳞毛蕨贯众(W2)和峨嵋蕨贯众(W1)则独立分开,分析结果与相似度分析相一致。见图 2。

2.5 绵马贯众与各伪品之间的PCA PCA 是将多 个变量通过线性变换以洗出较少重量变量的一种 多元统计分析方法,运用PCA方法可以在不降低光 谱差异的前提下,减少数据维数,将每条光谱与其 他光谱进行比较[13-14]。将全部14批样品红外图谱所 有吸收峰吸光度值作为变量(见表2),通过SPSS 22.0 进行 PCA, 结果见图 3。图 3 为 14 批样品的三 维散点图,所提取的3个成分对分析结果的贡献率 分别是75.7%、14.4%和6.3%,累计贡献率达到了 96.4%,包含了原数据中大部分信息,可知分析结果 反映了样品的真实情况。图3表明除了S1和S8产 地为吉林敦化和通化的两个样品点稍有离散,其余 绵马贯众样品点基本重合(S2~S7),但仍然都较好 地归集到了一个区域,而W1~W5全部伪品样品点 则完全离散,其中单芽狗脊蕨贯众(W3)和狗脊蕨贯 众(W4)与绵马贯众距离相对较近,此结果与相似度 分析和聚类分析保持一致。

3 讨论

本实验选取9个产地绵马贯众和5种常见伪品作为研究对象,建立了绵马贯众红外光谱共有模式,利用原始红外光谱和二阶导数光谱进行图形特征识别分析,利用相似度、聚类分析和PCA的化学计量法进行了数据分析。结果表明9个产地绵马贯众红外光谱相似度较高,相似度均在0.960以上,红外光谱吸收曲线亦大致重叠,但部分波段吸光度有

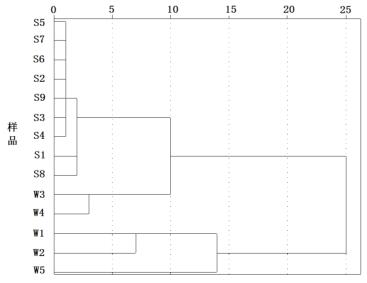
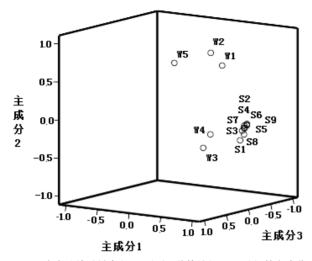



图2 9个产地绵马贯众(S1~S9)及5种伪品(W1~W5)红外光谱聚类分析谱系图

图3 9个产地绵马贯众(S1~S9)及5种伪品(W1~W5)红外主成分分析图

高低之分,显示各地样品的成分含量存在差异,此 结果可能与样品生长地理环境之间存在关联。共 有光谱与5个伪品的比较结果显示相似度最高的是 W4狗脊蕨贯众,其夹角余弦达到0.918,相关系数在 0.801,其余依次走低,此趋势与市场实际鉴别差错 率情况相符。共有峰与伪品图谱进一步对比发现 波段之间,5个伪品均存在一个吸收尖峰,而共有模 式为一个中等吸收肩峰。真伪样品的二阶导数光 谱在1554~1494 cm⁻¹区域虽然均为峰谷,但是谷形 略有差别,此与原始光谱中的吸收峰和肩峰在二 阶导数中均显示为峰谷特性有关,而二阶导数在 4 000~3 500 cm⁻¹、1 748~1 604 cm⁻¹和 1 110~990 cm⁻¹ 三个区域中吸收峰数目明显不同,可资区别。进一 步采用聚类分析方法分析结果表明在平方欧氏距 离为5时,即可将9个产地绵马贯众与5种伪品归为 4类,正品绵马贯众1类,5个伪品归为3类。PCA结 果也再次验证了正品与伪品之间的亲缘远近关系, 其中W3单芽狗脊蕨贯众和W4狗脊蕨贯众与绵马 贯众离散度虽小,但依然能够清晰分开,W1峨眉蕨 贯众、W2鳞毛蕨贯众和W5苏铁蕨贯众离散相对较 大,总体离散特征与正伪品外观形态相似度十分相 符,说明聚类分析和PCA此两个化学模式识别方法 分析绵马贯众正伪品的红外数据特征较为准确。

相对于绵马贯众 UPLC、HPLC 和 PCR^[15-19]等质量分析手段而言,本红外光谱鉴别实验研究方法取样量小,制样简单,分析速度快,并从整体上反应绵

马贯众的成分信息,采用化学模式识别分析结果准确,可对市场长期存在的绵马贯众易混淆品种问题进行快速甄别,为实际检验和生产质量的前期控制提供有效手段和科学依据。

参考文献

- [1] 国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科技出版社,1997:2.
- [2] 汪敏, 赵凯, 汪瑞. 中药材贯众原植物的考证[J]. 中国中药杂志, 2012, 37(9):1337-1340.
- [3] 任莹, 吕晓军, 李德林, 等. 一测多评法同时测定保肝丸中4 个指标性成分的含量[J]. 安徽医药, 2020, 24(12): 2355-2359.
- [4] 孙辉,何胜利.基于 HPLC 波长切换法对养胃宁胶囊中 6 种成分的质量控制研究[J].安徽医药,2019,23(3):473-476.
- [5] 刘冰晶,肖海.山药红外指纹图谱相似度分析[J].赣南医学院学报,2018,38(1):16-22.
- [6] 毕晓黎,许灿新,李养学,等.延胡索及其混伪品的红外光谱鉴别[J].时珍国医国药,2016,27(7):1653-1655.
- [7] 王琰,王虹熙,孙丹丹,等.海藻药材及其混伪品的红外光谱分析研究[J].时珍国医国药,2018,29(3):617-620.
- [8] 刘宇,陈文仿,王江瑞,等.红外光谱结合化学计量分析对不同产地玛咖的鉴别[J].中药材,2016,39(12):2733-2737.
- [9] 向丽,张贵君,赵保胜,等.肉桂不同部位及其挥发油的红外光谱宏观表征[J].中国实验方剂学杂志,2017,23(8):57-61.
- [10] 姜大成,何淑华,张洁.红外光谱鉴定中药材的原理与方法 [J].中药材,1993,16(7):42-43.
- [11] 马传江,曹广尚,杨培民,等.绵马贯众的鉴定、化学成分及 药理作用研究进展[J].中国药房,2016,27(28);4013-4015.
- [12] 翁诗甫,徐怡庄.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2016;223-228.
- [13] 孔浩,郭庆梅,王慧慧,等.主成分分析法在中药质量评价中的应用[J].辽宁中医杂志,2014,41(5):890-892.
- [14] 石岩, 魏锋, 马双成. 关于主成分分析在中药和天然药物分析研究应用的探讨[J]. 中国中药杂志. 2018. 43(14): 3031-3035.
- [15] 刘畅, 闫艳韬, 王娟, 等. UPLC 法测定绵马贯众抗流感病毒有效部位中3种成分的含量[J]. 中药材, 2018, 41(10): 2389-2391.
- [16] 蔡振娇,吴亚男,许亮,等. 基于psbA-tmH序列DNA条形码技术的绵马贯众鉴定研究[J]. 中国中药杂志, 2016, 41(22): 4183-4187.
- [17] 王甫成,孟祥松,蒋磊,等.HPLC指纹图谱法鉴别半夏及其伪品[J].辽宁中医药大学学报,2016,18(4):56-58.
- [18] 庞文静,郑玉莹,彭维,等.正品枳壳指纹图谱的构建及其与混伪品的聚类分析[J].中南药学,2017,15(10):1345-1350.
- [19] 杨冉冉,姬蕾,李二文,等.鸡血藤的HPLC指纹图谱及模式识别研究[J].中草药,2017,48(21):4530-4536.

(收稿日期:2020-11-16,修回日期:2021-03-04)